Convex saturated particle filter

نویسندگان

  • Pawel Stano
  • Arnold Jan den Dekker
  • Zsófia Lendek
  • Robert Babuska
چکیده

In many systems the state variables are defined on a compact set of the state space. To estimate the states of such systems, the constrained particle filters have been used with some success. The performance of the standard particle filters can be improved if the measurement information is used during the importance sampling of the filtering phase. It has been shown that the particles obtained in such a way approximate the true state of the system more accurately. The measurement is incorporated into the filtering algorithm through a userspecified detection function, which aims to detect the saturation as it occurs. The algorithm derived from the aforementioned principle is called the Saturated Particle Filter (SPF). In our previous work we have derived a complete SPF framework for the class of systems with one-dimensional constraints. In this paper we derive a novel Convex SPF that extends our method to multidimensional systems with convex constraints. The effectiveness of the new method is demonstrated using an illustrative example.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saturated Particle Filter: Almost sure convergence and improved resampling

Nonlinear stochastic dynamical systems are widely used to model physical processes. In many practical applications, the state variables are defined on a compact set of the state space, i.e., they are bounded or saturated. To estimate the states of systems with saturated variables, the Saturated Particle Filter (SPF) has recently been developed. This filter exploits the structure of the saturate...

متن کامل

Adaptive Variational Particle Filtering in Non-stationary Environments

Online convex optimization is a sequential prediction framework with the goal to track and adapt to the environment through evaluating proper convex loss functions. We study efficient particle filtering methods from the perspective of such framework. We formulate an efficient particle filtering methods for non-stationary environment by making connections with the online mirror descent algorithm...

متن کامل

A cone theoretic Krein-Milman theorem in semitopological cones

In this paper, a Krein-Milman  type theorem in $T_0$ semitopological cone is proved,  in general. In fact, it is shown that in any locally convex $T_0$ semitopological cone, every convex compact saturated subset is the compact saturated convex hull of its extreme points, which improves the results of Larrecq.

متن کامل

On Computational Methods for Nonlinear Estimation

The Bayesian approach provides a rather powerful framework for handling nonlinear, as well as linear, estimation problems. We can in fact pose a general solution to the nonlinear estimation problem. However, in the general case there does not exist any closed-form solution and we are forced to use approximate techniques. In this thesis we will study one such technique, the sequential Monte Carl...

متن کامل

Clustering using sum-of-norms regularization; with application to particle filter output computation, Report no. LiTH-ISY-R-2993

We present a novel clustering method, SON clustering, formulated as a convex optimization problem. The method is based on over-parameterization and uses a sum-of-norms regularization to control the trade-o between the model t and the number of clusters. Hence, the number of clusters can be automatically adapted to best describe the data, and need not to be speci ed a priori. We apply SON cluste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Automatica

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2014